Estimation of conditional laws given an extreme component

نویسندگان

  • Anne-Laure Fougères
  • Philippe Soulier
چکیده

Let (X,Y ) be a bivariate random vector. The estimation of a probability of the form P (Y ≤ y | X > t) is challenging when t is large, and a fruitful approach consists in studying, if it exists, the limiting conditional distribution of the random vector (X,Y ), suitably normalized, given that X is large. There already exists a wide literature on bivariate models for which this limiting distribution exists. In this paper, a statistical analysis of this problem is done. Estimators of the limiting distribution (which is assumed to exist) and the normalizing functions are provided, as well as an estimator of the conditional quantile function when the conditioning event is extreme. Consistency of the estimators is proved and a functional central limit theorem for the estimator of the limiting distribution is obtained. The small sample behavior of the estimator of the conditional quantile function is illustrated through simulations. Some real data are analysed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for Large Games with Exchangeable Players

We develop a sampling theory for games with a large number of players that are exchangeable from the econometrician’s perspective. We show that in the limit, heterogeneity can be separated into an individual and an aggregate component, and establish conditional laws of large numbers and central limit theorems given the aggregate state of the game. We then develop estimation procedures that elim...

متن کامل

Nonparametric Estimation of Extreme Conditional Quantiles

The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on i.i.d. samples. On the other hand, quantile regression based procedures work well for estimation within the data range i.e. the estimation of nonextreme quantiles but break down when main interest is i...

متن کامل

Functional kernel estimators of conditional extreme quantiles

We address the estimation of “extreme” conditional quantiles i.e. when their order converges to one as the sample size increases. Conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed kernel estimators. A Weissman-type estimator and kernel estimators of the conditional tailindex are derived, permitting to estimate extreme conditio...

متن کامل

estimation of value - at - risk and expected shortfall based on nonlinear models of return dynamics and Extreme Value Theory

We propose an estimation procedure for value at risk (VaR) and expected shortfall (TailVaR) for conditional distributions of a time series of returns on a ̄nancial asset. Our approach combines a local polynomial estimator of conditional mean and volatility functions in a conditional heterocedastic autoregressive nonlinear (CHARN) model with Extreme Value Theory for estimating quantiles of the c...

متن کامل

Digitized by the Internet Archive in 2011 with Funding from Conditional Extremes and Near-extremes Conditional Extremes and Near-extremes Conditional Extremes and Near-extremes Discussions and from Whom I Learned a Great Deal; and Also Friends

This paper develops a theory of high and low (extremal) quantile regression: the linear models, estimation, and inference. In particular, the models coherently combine the convenient, flexible linearity with the extreme-value-theoretic restrictions on tails and the general heteroscedasticity forms. Within these models, the limit laws for extremal quantile regression statistics are obtained unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009